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Integrating Large-Scale Soft Data by Simulated
Annealing and Probability Constraints1

C. V. Deutsch2 and X. H. Wen3

Interpretation of geophysical data or other indirect measurements provides large-scalesoftsecondary
data for modelinghard primary data variables. Calibration allows such soft data to be expressed
as prior probability distributions of nonlinear block averages of the primary variable; poorer qual-
ity soft data leads to prior distributions with large variance, better quality soft data leads to prior
distributions with low variance. Another important feature of most soft data is that the quality is
spatially variable; soft data may be very good in some areas while poorer in other areas. The main
aim of this paper is to propose a new method of integrating such soft data, which is large-scale and
has locally variable precision. The technique of simulated annealing is used to construct stochastic
realizations that reflect the uncertainty in the soft data. This is done by constraining the cumulative
probability values of the block average values to follow a specified distribution. These probability
values are determined by the local soft prior distribution and a nonlinear average of the small-scale
simulated values within the block, which are all known. For each realization to accurately capture
the information contained in the soft data distributions, we show that the probability values should
be uniformly distributed between 0 and 1. An objective function is then proposed for a simulated
annealing based approach to enforce this uniform probability constraint. The theoretical justifica-
tion of this approach is discussed, implementation details are considered, and an example is pre-
sented.

KEY WORDS: geostatistical simulation, stochastic modeling, reservoir characterization.

INTRODUCTION

There are often fewhard primary z data available to build a complete three-
dimensional model of thez variable. In many cases, the limited hard data are
supplemented bysoftsecondary data that are related to thez variable of interest.
In a petroleum reservoir characterization context, seismic measurements, remote
sensing, inversion of historical production data, or geological interpretation is used
for soft data. We present our new method in the context of petroleum reservoir
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modeling; however, it is widely applicable to any soft data integration problem
encountered in earth science modeling.

Soft data are often at a large scale relative to the scale of thez variable being
modeled. Another feature of many soft data types is that the precision or “hardness”
of the soft data is locally variable. These two features make it difficult to apply
conventional geostatistical algorithms to soft data integration.

Although the focus here is on integrating large-scale soft data the resulting
realizations of the small scalez values must simultaneously honor additional data
such as following: (1) local hardz data; (2) the histogram of small scalez data;
(3) measures ofz spatial variability, e.g.,z-variogram and, possibly, indicator
variograms for special continuity of extreme values; and (4) soft data from other
sources.

The common situation of large-scale soft data is illustrated in Figure 1. Note
two important features of soft data: (1) the volume of measurement is signifi-
cantly larger than either the scale of the hard data or the modeling scale; and
(2) the precision of the soft data derived distributions is better in certain areas,
e.g., near the center of the area of interest where the calibration is more robust or
where the interpretation of the raw secondary data, such as historical production
data, is more reliable. These prior distributions are obtained by seismic-data cal-
ibration (Deutsch, Srinivasan, and Mo, 1996), inversion of historical production
data (Oliver, 1994; Wen, Deutsch, and Cullick, 1997), or by geological interpre-
tation.

Conventional geostatistical approaches have difficulty in handling this type
of data (Dubrule, 1989; Journel and Huijbregts, 1978; Goovaerts, 1997). The krig-
ing equations in Gaussian-based simulation methods could be written to include
soft data of large volumetric support. The resulting cokriging equations, however,
would call for the difficult inference of many statistical parameters: (1) thesmall-
scale hard–soft cross variogram for each soft datum, (2) the cross variograms
between all soft data, (3) a positive definite model of coregionalization that would
fit all of these variogram models, and (4) linear averaging (perhaps after some
ω-power transform).

The inference problem would be even more daunting for indicator-based
methods. A common approach in indicator geostatistics is to transform the soft
data to prior distributions of the hard primary variable of interest. Then, some
model, such as the Markov–Bayes model (Zhu, 1991), is adopted to update these
distributions to posterior distributions for geostatistical simulation. The large vol-
umetric scale of the soft data considered here makes this approach intractable; the
prior distributions are of nonlinear averages of the primary variable andnoton the
primary variable itself.

Another significant problem with kriging-based approaches is that there is
no convenient way to handle the fact that the soft data have locally variable
precision. One could imagine grouping soft data according to some measure
of “goodness” and considering each grouping as a different type of soft data.
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Figure 1. A schematic illustration of a reservoir showing the scale of soft data derived from
seismic or production data and the scale of hard data and modeling scale. The large-scale soft
data may be represented as prior distributions ofzv averages,F(uv ; zv). At certain locations
(A) the soft data does not provide much information andF(uv ; zv) has a large variance. At
other locations (B and C), the soft data provide information on whetherzv is high (B) or
low (C).

This would make the inference problem for kriging-based approaches even more
difficult.

An iterativesimulated-annealingapproach will be considered here to accom-
plish the integration of these diverse data types. The difficulty with annealing-based
methods is often the delicate adjustment of many tuning parameters. Considering
soft data by the methodology presented below speeds convergence and mitigates
the difficulty of setting tuning parameters such as the annealing schedule.
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The soft data values are reformatted as prior distributions of blockz values.
In some cases, such as large-scale inversion of historical production data, the
soft data are already in the correct format. In presence of soft seismic data, the
reformatting requires (1) knowledge of the averaging process, e.g., arithmetic, geo-
metric, harmonic,. . . , and (2) a calibration cross plot betweenz-average values and
collocated soft data. Knowledge of the averaging process comes from an external
understanding of the physics. The calibration cross plot comes from locations
where both blockz values and the soft data variable are known, for example, at
well data locations. The distribution of blockz values is then inferred for each soft
data value.

We simulate thez values at a small scale. It is possible, however, to calculate
large-scalez block values at any block location in the iterative simulation process.
These large-scale block values are calculated at the locations of a soft data derived
prior probability distribution. The simulated values are considered as quantiles on
the corresponding soft data distributions. Then, thesez quantiles are transformed
to cumulative probability (CDF) values, which are unit free and account for dif-
ferences in the local distributions. The “differences” in the local distributions are
due to the fact that the soft data are better in some areas and less informative in
other areas.

It will be shown that these probability values must be uniformly distributed
between 0 and 1 to reflect the “information” in the soft data. This notion was
introduced in the context of cross-validating stochastic simulation algorithms (see
Deutsch, 1996).

The approach presented in this paper is based on thedefinitionof a probability
distribution and quantiles of probability distributions. As such, the notation may
be unusual to many geoscientists; it will be necessary to go between figures and
the notation.

The methodology and theoretical framework will be presented first. Then,
implementation details using an objective function in simulated annealing will be
discussed. It is interesting to note that the theoretical background has no direct
link to simulated annealing; other numerical algorithms could be used. Finally, an
example is presented with ideas for future development.

METHODOLOGY

Consider the distribution over a fieldA of an attributez(u), u ∈ A, wherez
could represent a categorical indicator variable or a continuous variable such as
a mineral concentration or other petrophysical property. The location vector for
the z-variable at the small 3D modeling scale is denotedu = (x, y, t), wheret
is the vertical “stratigraphic” coordinate. The goal here is to construct alternative,
equally probable, high-resolution 3D models of the spatial distribution ofz(u); each
realization is denoted with the superscriptl : {z(l )(u), u ∈ A}, l = 1, . . . , L. Soft
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secondary data available at a coarse scale (denotedv), provides prior probabilistic
information on volumetric averages ofz:

F(uv; zv), uv ∈ A (1)

The locationu and hard data valuez are subscripted byv to denote the scale of
the location and the value being considered;uv is a coarse grid block andzv is
an average ofz over that block. These distributions are nonstationary—that is,
dependent on the soft data aroundu:

F(uv; zv) = Prob{Zv(u) ≤ z | soft data aroundu}

wherezv(u) could be represented as theω-power (block) average ofzvalues within
v centered atu:

zv(uv) =
[∫

u′∈v(u)
zω(u′) du′

] 1
ω

(2)

whereω = 1 for a categorical indicator variable and most continuous variables
andω ∈ [−1, 1], accounting for nonlinear averaging in the case of permeability.
The specific value ofω must be established through a calibration exercise. Such a
calibration exercise would consist of (1) generating finez scale realizations of the
variable, (2) scaling the fine-scale realization to a coarsev-scale realization, and
(3) calculate theω value that closely reproduces thev-scale values.

Theω = 1 average for a categorical indicator variable would represent the
fraction of that category at locationuv. There would, of course, be one such average
for each category. The procedure will be developed below for a continuous variable.
An identical implementation would be used for a binary system (with only two
categories); however, implementation for more categories would require increasing
the dimensionality to consider multiple indicators, that is, multiple averages.

The soft data distributions are established through calibration with the hard
data. This is a different type of calibration than theω calibration. Here, the cali-
bration exercise is that performed by the bicalib program (and related discussion)
in the GSLIB book, that is, the soft data are directly compared to the hard data at
the hard data locations. In the simplest case, the conditional distributions may be
taken from the cross plot between the soft and hard data. In the presence of too
few calibration data, the cross plot may need to be supplemented by small-scale
“physics-based” simulations or expert interpretation (Alabert, 1989, or Deutsch,
1992).

The problem is to construct 3D realizations,{z(l )(u), u ∈ A}, l = 1, . . . , L,
of zat the scale of the hard data (the modeling scale illustrated in Fig. 1) that honor
the given prior distributions ofzv(uv). For a given realization̂l at locationu′v, there
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Figure 2. A schematic illustration showing how the probability valueF(u′v ; z( l̂ )
v (u′v)) is taken

directly from the soft data prior distribution given the local hard data averagez( l̂ )
v (u′v).

is only one block average—z( l̂ )
v (u′v)—which corresponds to a particular probability

value on the prior distribution, that is,F(u′v; z( l̂ )
v (u′v)). If z( l̂ )

v (u′v) is less than the
minimum value of the prior distribution, thenF(u′v; z( l̂ )

v (u′v)) = 0; whenz( l̂ )
v (u′v) is

below the median, thenF(u′v; z( l̂ )
v (u′v)) < 0.5; whenz( l̂ )

v (u′v) is above the median,
thenF(u′v; z( l̂ )

v (u′v)) > 0.5; and whenz( l̂ )
v (u′v) is greater than the maximum value of

the prior distribution,F(u′v; z( l̂ )
v (u′v)) = 1. The probabilityF(u′v; z( l̂ )

v (u′v)) is taken
directly from the soft data derived prior distribution (see calibration discussed in
previous paragraph) given the local hard data averagez( l̂ )

v (u′v) (Fig. 2).
If no other information is available, the distribution of average values (zv),

over many realizations, for each coarse grid blockuv, should match the distribution
provided by the prior soft information. That is, for a large number of realizations
(L):

FL (uv; zv) = F(uv; zv), ∀uv ∈ A, ∀zv ∈ [zv,min, zv,max] (3)

where

FL (uv; zv) =
L∑

l=1

i (l )(uv; zv); i (l )(uv; zv) =
{

1, if z(l )
v (uv) ≤ zv

0, otherwise
(4)

Integrating additional local hard and soft data would amount to “update” the prior
soft distributions; therefore, in practice, the distributionsFL (uv; zv) will not equal
the soft data prior distributionsF(uv; zv). An implicit assumption in the following
development is that this updating is not significant, i.e., the distributionFL (uv; zv)
should be close toF(uv; zv) for most locations. This is a reasonable assumption in
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the common case of sparse hard data and when the soft data have been calibrated
to the hard data.

If we were to generate all “L” realizations at one time, it would be possi-
ble to compare the simulated distributionsFL (uv; z(uv)) to the prior distributions
F(uv; zv).

By construction, the probability valuesFL (uv; z(l )
v (uv)) are uniformly dis-

tributed between 0 and 1. This is due to the definition of the cumulative distribution
and quantile functions (see figures for graphical illustration). Thus, if we interpret
the simulated valuesz(l )

v (uv) as quantiles of the soft data distributionsF(uv; zv)
(see Fig. 2 for an illustration of the meaning), the associated probability values

µ(l )(uv) = F
(
uv; z(l )

v (uv)
)
, l = 1, . . . , L , fixeduv (5)

must also be uniformly distributed between 0 and 1 to meet the constraint expressed
in Eq. (3). The distribution of these probability values,F ′(uv;µ) is only defined
when the quantile values for all realizationsz(l )

v (uv), l = 1, . . . , L are available;
however, for practical reasons, we would like to generate only one realization at a
time.

The central idea underlying our proposal is to trade the unavailable replication
over all L realizations for replication available over the set of locationsuv in the
area of interestA. That is, we consider the distribution defined by the probability
values over all locations:

µ(l )(uv) = F
(
uv; z(l )

v (uv)
)
, uv ∈ A, fixed l (6)

Choosing the distribution over all locations instead of the distribution over all
realizations of the random function is analogous to the common decision ofsta-
tionarity. In statistical inference,stationarityamounts to replace the unavailable
replication at a particular locationu for replication elsewhere in the area of interest
(Deutsch and Journel, 1992; Isaaks and Srivastava, 1989). The appropriateness of
this decision can be checkeda posteriori(as we do later in this paper); however, it
cannot be proven. In all rigor we would like to impose constraint (5) and not (6).

Figure 3 presents this concept in graphical form. The first three soft data
cumulative distributionsF(uv; zv) are illustrated at the top of Figure 3; in practice,
there are many such distributions—one for each coarse grid block location. These
distributions are fixed, that is, they do not change during the simulation ofz or for
different realizations. The simulated values [labeled aszv(uv), zv(u′v), zv(u

′′
v) on

the figure] depend on the simulation method and realization. Each of these quantile
values lead to different cumulative probability values (0.68, 0.11, and 0.93 in the
figure). The histogram at the bottom of the figure represents the fraction (of then
block values) that fall into each class of probability. The soft data are honored, in
this case, when 1/5 of the values falls into each of the 5 classes.
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Figure 3. A schematic illustration of the idea of using probability constraints.

We now present an objective function that imposes constrain (6) and study
its effectiveness at integrating large-scale soft data. Our examples will show that
the soft data is honored accounting for both its scale and precision.

SIMULATED ANNEALING FOR GEOSTATISTICAL MODELING

Integration of large-scale soft data will be enforced through an objective func-
tion in a simulated-annealing based approach (Deutsch, 1992; Farmer, 1992; Hird,
1993; Ouenes and others, 1994; Perez, 1992). Conventional constraints such as
the histogram, variogram, and indicator variograms will be included (see code in
second edition of GSLIB; Deutsch and Journel, 1997). The multiple constraints
will be weighted such that all reach low final values for each realization. Note,
however, that no weighting permits low objective function values in presence of
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conflicting objective function components. Conflicting data must be resolved prior
to simulated annealing.

The basic elements of the simulated-annealing based approach are as follows:

1. Create an initial realizationz(u j ), u j ∈ A, j = 1, . . . , N, whereN is the
number of grid cell locations in the fine-scale model (the scale of thez
model being constructed).

2. Calculate a quantitative objective function that measures the mismatch
between the desired features and those of the realization.

3. Perturb the model by changing the property value at some cellj ′ ∈
[1, . . . , N].

4. Calculate a new objective function by updating the current one.
5. Apply the simulated-annealing decision rule to decide whether or not to

accept the perturbation (this decision rule requires a temperature param-
eter, which is reduced periodically to ensure ultimate convergence of the
optimization problem; see Deutsch, 1992).

6. Return to step 3 until the objective function has been lowered to a point
where the desired data have been satisfactorily honored.

In the context of integrating large-scale soft data, we need to write an equation
for the objective function and show how it can be quickly updated after a local
perturbation. For clarity, we will drop the (l ) superscript in the following; we create
one realization and then start all over again with a new random initial realization
and sequence of random numbers.

Considern soft data at locationsuvi , i = 1, . . . ,n. Given the initial realiza-
tion, the hard variable [z(u j ), u j ∈ A, j = 1, . . . , N] can be averaged to the scale
of the soft data, perhaps nonlinearly, with (2) to yieldzv(uvi ), i = 1, . . . ,n. The
probability value at each coarse grid block locationµ(uvi ) = F(uvi ; zv(uvi )) can
be calculated from the knownF(uvi ) distributions.

Closer Look at Soft Data Distributions

The n soft data distributionsF(uvi ; zv), i = 1, . . . ,n are known through
calibration. Thus, we can calculate the mean of each distribution:

z̄v(uv) =
∫ +∞
−∞

zv d F(uv; zv) (7)

where the subscripti = 1, . . . ,n is implicit to this equation.
These conditional means must be considered in our formulation of an ob-

jective function. For example, areas with large conditional means will have small
starting cumularive probability values (recall that the initial realization ofz’s is
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assigned randomly). Conversely, when the conditional mean is low, the cumulative
probability values are likely to be high. See Figure 1 for an illustration. Although
fully expected, these biased starting values could lead to a subtle bias in the final
realizations. In particular, imposing a uniform distribution of probability values
over all locations (6) will not necessarily ensure a uniform distribution over many
realizations [Eq. (5)] in “low” and “high” regions. Highz-valued areas could be
underestimated and lowz-valued areas could be overestimated.

The conditional mean values are known and constant for all locations (inde-
pendent of the realization). Therefore, to avoid this bias we could simply classify
all locations by their conditional mean values, for example, we could define 10
classes based on the 9 deciles of the conditional mean distribution. Then, the ob-
jective function to ensure uniformity can be written for each class. In particular,
the distribution of conditional mean valuesFz̄(z) could be established by taking
the average [Eq. (7) above] of the soft data distributions at the soft data locations
uvi , i = 1, . . . ,n. An indicator variable would then be defined that classifies each
location into 1 ofnm equal probability classes:

im(m;µv) =
{

1, if m− 1
nm
≤ F(z̄(uv)) < m

nm

0, otherwise
m= 1, . . . ,nm (8)

Uniformity of the probability values will be enforced within each of thenm classes;
there are aboutn/nm data in each class. Once again, the reason to partition the
domain into these classes is to avoid systematic under or overestimation.

Objective Function

As described in Eq. (6), the goal is for the distribution ofµ(uvi ), i = 1, . . . ,n
values to be uniformly distributed. To avoid bias, our goal is for thenm distri-
butions ofµ(uv j,m, j = 1, . . . ,n/nm; m = 1, . . . ,nm) to be uniform. To lighten
the notational burden, a global objective function forµ(uvi ), i = 1, . . . ,n will be
written. Then, the procedure can be appliednm times.

To enforce the distribution ofµ(uvi ), i = 1, . . . ,n values to be uniformly
distributed, we definenc + 1 thresholdsµc, c = 0, . . . ,nc to equally divide the
range ofµ (0 to 1):

µ0 = 0.0; µc = c

nc
, c = 1, . . . ,nc (9)

An indicator variable is defined for each class:

iµ(c;µ) =
{

1, if µc−1 ≤ µ < µc

0, otherwise
c = 1, . . . ,nc (10)
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The proportion in each class is then

pc =
∑n

k=1 i u
(
c;µ

(
uvk

))
n

, c = 1, . . . ,nc (11)

wheren is the number of coarse block locations. The closeness to a uniform
distribution is measured by

Oµ =
nc∑

c=1

[
pc − 1

nc

]2

(12)

For practical application of simulated-annealing based algorithms, we must be
able to quickly update the objective function after a local change. For a candidate
change ofz(u j ′ ) toznew(u j ′ ), thezaverage in the coarsev block containing location
u j ′ is changed, i.e.,zv(uvi ′ ) changes toznew

v (uvi ′ ) by

znew
v

(
uvi ′
) = [zv

(
uvi ′
)ω + 1

nv

(
znew(u j ′ )

ω − z(u j ′ )
ω
)] 1

ω

(13)

wherenv is the number of fine scale cells within a coarse blockv. The current
classc′ of zv(uvi ′ ) and the classc′′ of the candidate valueznew

v (uvi ′ ) are readily
determined from the original probability value and the one considering the change,
i.e., F(uvi ′ ; zv(uvi ′ )) andF(uvi ′ ; znew

v (uvi ′ )) using (10). The class probabilities (11)
are changed as follows:

pnew
c′ = pc′ − 1

n

and

pnew
c′′ = pc′′ + 1

n

the updated objective function is

Onew
µ = Oµ −

[
pc′ − 1

nc

]2

+
[

pnew
c′ −

1

nc

]2

−
[

pc′′ − 1

nc

]2

+
[

pnew
c′′ −

1

nc

]2

This local updating is necessary for fast implementation of the proposed approach.
The sasim simulated annealing program in GSLIB (Deutsch and Journel,

1992) can be easily modified to include the objective function described in Eq. (12)
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with the local updating rule. Recall that the objective function will be applied in
nm classes.

As a preliminary example, Figure 4 shows reproduction of the global distribu-
tion of uniform probability values (left) and the cross plot of the probability values
vs the conditional mean. Note the desired lack of correlation between the proba-
bility values and the conditional mean. This example is a 100 by 100 realization.

In the example developed below we show that this objective function leads to a
uniform distribution over many realizations (5). We have have checked for relation-
ships with other characteristics, such as the local variance, but have observed none.

EXAMPLE

In this section we demonstrate the application of the proposed approach to
integrate large-scale soft data.

The first step is to display the large-scale soft data that we are considering.
A complete, but paper-consuming, approach, is to show a series of probability or
quantile maps. A less complete, but more consise, approach is to show the mean
and variance of each soft data-derived local distribution, i.e.,

E{F(uv; zv)} and Var{F(uv; zv)}

whereE{·} and Var{·} are the expected value and variance operators.
Synthetic data are considered here. The data are from a study related to

the integration or historical production data in geostatistical reservoir modeling.
Figure 5 shows the expected value, (E{F(uv; zv)}), and standard deviation,
(
√

Var{F (uv; zv)}), of the soft data distributions considered here. As commonly
encountered with many data, the distributions in the central part of the area of
interest have less variance. Note the continuity in the 20◦ direction, the two bands
of high permeability, and the region of reduced permeability in the lower right cor-
ner. The variance map must be consulted to judge the reliability of the mean map.
These coarse-scale distributions will be used, together with an assumed known
histogram and variogram of the fine-scalez variable, for stochastic simulation.
Locations (A) and (B) are highlighted for more detailed checking; the histograms
of zv at (A) and (B) are given at the bottom of Figure 5. (A) is in a region with
relatively large uncertainty and (B) is in a location with low uncertainty.

Figure 6 shows two coarse-scalez realizations. These realizations were con-
structed with a revised sasim simulated annealing program to honor (1) the input
target coarse-scale histogram, (2) the input target coarse-scale variogram, and
(3) closeness of the probability valuesµ(l )(uv) = F(uv; z(l )

v (uv)) to a uniform dis-
tribution. Each simulation took less than 30 CPU sec on an SGI Indigo 2. Each
component in the three-part objective function was lowered to less than 0.01,
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where the objective function was initialized to 1 in the beginning. Histograms of
µ(l )(uv) corresponding to the two realizations are shown below each realization on
Figure 6. The two high-permeability bands and the reduced permeability region
have been reproduced within their specified reliability (refer back to the variance
map on Fig. 5).

As described above, a key decision in this approach is to consider the distribu-
tion ofµ(l )(uv) over all locations of one realization instead of over all realizations.
To check this assumption, 100 realizations were generated and the histograms at
two locations (A) and (B) on Figure 5 were checked. Figure 7 shows the histograms
of µ(l )(uv) over the 100 realizations; note that the distributions are approximately
uniform between the bounds of 0 and 1, as expected.

The most important novel aspect of the proposed approach is that thezvariable
can be simulated at a fine scale while imposing large-scale soft data constraints.
Figure 8 shows two fine scale realizations that honor the coarse-scale soft data
shown in Figure 5. A geometric average was considered to calculate thez(l )

v (uv)
values for every coarse grid block; there are 4·4= 16 fine-scale grid cells for each
coarse-grid block. The small-scalez-variable target histogram and variogram in
the three part objective function have greater variance than the coarse-scale input,
because there is less volume averaging.

DISCUSSION

Conventional Gaussian and indicator-based geostatistical algorithms for data
integration do not simultaneously account for the coarse-scale and variable pre-
cision of soft data. The simulated-annealing based objective function presented
here is designed to account for such constraints. The objective function constrains
the probability valuesµ(l )(uv) = F(uv; z(l )

v (uv)) to follow a uniform distribution
between 0 and 1. The block averages from realizationl , z(l )

v (uv), must fall within
the distribution predicted by the soft dataF(uv; z); sometimes on the low side
F(uv; z) < 0.5 and sometimes on the high sideF(uv; z) > 0.5, but, in expected
value, uniformly between 0 and 1. This approach directly constrains the realization
to the “information” contained in the soft data.

We expect the input soft distributions to come from remote sensing, seis-
mic, or dynamic flow data. These data sources provide coarse-scale constraints
with locally variable precision. The proposed method is no panacea; calibra-
tion of these soft data derived distributions and the inference of required small-
scale statistics (histogram and variogram) remain important outstanding prob-
lems. When there are sufficient hard data (more than about 100), the calibration
is reliable. In the presence of very few hard data it is essential to have a solid
physical understanding of the soft data and how it relates to the variable un-
der consideration. Of course, this is a problem encountered by all geostatistical
methods.
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Implementation of the method is made practical because of the locally up-
datable objective function. In practice, there is no addictional CPU penalty to pay
to for adding the soft data constraint to an annealing-based simulation program.

The methodology also permits nonlinear averaging. Anω-power averag-
ing procedure was illustrated; however, any averaging law using, for example,
a wavelet or kernel function derived from the physics could be considered.
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